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Non-linear effects and 
thermoelectric efficiency of 
quantum dot-based single-electron 
transistors
Vincent Talbo1, Jérôme Saint-Martin2, Sylvie Retailleau2 & Philippe Dollfus2

By means of advanced numerical simulation, the thermoelectric properties of a Si-quantum dot-based 
single-electron transistor operating in sequential tunneling regime are investigated in terms of figure 
of merit, efficiency and power. By taking into account the phonon-induced collisional broadening of 
energy levels in the quantum dot, both heat and electrical currents are computed in a voltage range 
beyond the linear response. Using our homemade code consisting in a 3D Poisson-Schrödinger solver 
and the resolution of the Master equation, the Seebeck coefficient at low bias voltage appears to 
be material independent and nearly independent on the level broadening, which makes this device 
promising for metrology applications as a nanoscale standard of Seebeck coefficient. Besides, at higher 
voltage bias, the non-linear characteristics of the heat current are shown to be related to the multi-
level effects. Finally, when considering only the electronic contribution to the thermal conductance, 
the single-electron transistor operating in generator regime is shown to exhibit very good efficiency at 
maximum power.

Thermoelectric effects refer to the ability of a material to directly convert internal heat fluxes into electrical power 
and vice-versa, via the so-called Seebeck and Peltier effects, respectively1. In the linear regime, the maximum 
efficiency of the thermoelectric (TE) conversion is expressed as a function of the unitless TE figure of merit 
defined as ZT G T K/e

2α=  where Ge is the electronic conductance, α the Seebeck coefficient, and K the thermal 
conductance2. To achieve high efficiency of TE conversion, high ZT values are desirable, but the common ZT 
values available today in TE materials are limited to about 1, which leads to weak efficiency with respect to stand-
ard heat engines3. Indeed, TE properties of bulk materials suffer from strong interdependence between the key 
parameters. The electronic and thermal conductivities are linked via the Wiedemann-Franz law, while according 
to the Mott formula the electronic conductivity and the Seebeck coefficient have opposite behaviors when 
approaching the Fermi level.

Research activities on thermoelectrics have been the subject of a renewed interest in the last two decades4–6 
thanks to both the recent progress in nanotechnology and the pioneering publications of Hicks and Dresselhaus7,8 
that pointed out that structures with reduced dimensionality exhibit better TE efficiency than their bulk counter-
part. Two strategies were used to improve ZT. The first strategy focuses on the denominator of ZT and targets at 
increasing phonon scattering, in particular at the nanostructure boundaries, to reduce the lattice thermal con-
ductance. The second strategy aims at improving the power factor Ge

2α  thanks to bandgap broadening and the 
enhancement resulting from the nonlinearities induced in the electronic density-of-states (DOS) of low dimen-
sional systems9. Many theoretical and experimental efforts have been performed to investigate thermoelectric 
properties of nanostructures such as superlattices10,11, graphene nanostructures12, semiconducting nanowires 
with various sizes and doping levels13,14.

If Silicon is prominent in microelectronics, Tellurium alloys as PbTe and Bi2 Te3 are dominating the TE mar-
ket along with some more complex alloys5. TE properties of Silicon and SiGe have also been investigated4,14 and 
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nanowires exhibiting ultra-low thermal conductivities appear to be particularly relevant13,15 in the context of TE 
applications.

Ultimately, in zero-dimensional (0D) structures, the delta-shape density of states could lead to the “best ther-
moelectric material”16. In such an “ideal” system of discrete levels, i.e. with negligible broadening, the efficiency 
tends to the maximum Carnot efficiency η = 1 − Tc/Th, where Th and Tc are the hot (h) and a cold (c) tempera-
tures, respectively17,18.

The efficiency at maximum power of resonant-tunneling quantum dot (QD) structures was investigated 
recently19–21. Some early works on QD-based structures have shown the typical sawtooth-like oscillations of the 
Seebeck coefficient as a function of gate bias22,23, and one of the first ZT value higher than one was measured in 
a QD superlattice24. Since then, a tremendous amount of theoretical25,26 and experimental27–29 works on QDs as 
energy harvesters has been produced, as reviewed by Sothmann, Sanchez and Jordan30. With the advent of TE 
studies in nanostructures, non-linearity effects have been evidenced and widely studied in the recent years31–37, as 
reviewed recently by Benenti et al.38.

Among QD-based devices, a promising candidate for TE applications is the single-electron transistor (SET)39–42,  
initially introduced by Averin and Likarev43,44. The discreteness of its DOS provides in principle a fine control 
of current thanks to the Coulomb blockade effect that reduces thermal losses. Taking advantage of advances in 
the reduction of QD sizes down to a few nanometers, Silicon-based SETs can now operate at room-temperature, 
demonstrating nice Coulomb oscillations45,46.

In this work, the thermoelectric efficiency and the electric power of a Silicon QD-based SET operating around 
100 K is simulated, beyond the linear response regime, where the figure of merit can no longer be directly linked 
to thermal efficiency, thus requiring its calculation. The main originality of the present study is to focus on a 
sequential transport regime including the energy level broadening induced by electron-phonon scattering. Even 
if most of TE studies in QDs are made in the framework of resonant tunneling transport, i.e. within the Landauer 
formalism, our assumption of a sequential tunneling regime is justified by the fact that electron-phonon scatter-
ing rates in the simulated QD are greater than tunneling rates47. The impact of sequential tunneling in QDs on 
thermopower has been studied previously by Scheibner et al. for temperatures lower than 1.5 K48. Here, we intend 
to describe properly at finite temperature both quantum confinement and Coulombic effects occurring in a sem-
iconducting QD, through the fully self-consistent solution of Poisson’s and Schrödinger’s equations.

On this purpose, we used our home-made 3D simulator SENS (Single-Electron Nanostructure 
Simulation)47,49,50 dedicated to QD-based single-electron devices, which is well suited for investigating TE prop-
erties as it allows us to describe the electrical behavior of such devices at any finite temperature51. It should be 
emphasized that this work focuses on the intrinsic thermoelectric behaviour of the electronic system, in the 
absence of phonon-mediated heat flow from source to drain contacts. The latter can be added as an additional 
external contribution, which will be discussed. Details about the model are given in the second section. The ther-
moelectric figure of merit, power and efficiency of a given SET are presented and discussed in the third section as 
a function of the strength of electron-phonon coupling. In particular, the non-linear effects that become relevant 
under large bias voltage are investigated.

Model
The code SENS has been used previously to investigate different types of QD-based single-electron devices, 
such as double49 and triple47 tunnel junctions, and has been extended to the case of the SET50. The simulation 
of steady-state electrical and thermal device characteristics relies on three stages. First, a 3D solver of coupled 
Poisson’s and Schrödinger’s equations provides the electronic structure of the QD according to the number of 
particles it contains. Then, the tunnel transfer rates are calculated through the Fermi golden rule within the 
Bardeen’s formalism, and finally, these rates are introduced into the Master equation to calculate the charge and 
heat currents.

Electronic structure of Si-QDs.  In this approach, the electronic structure of the QD is calculated through 
the self-consistent solution of the 3D Poisson’s and Schrödinger’s equations, within the effective mass and Hartree 
approximations, which have been proven to be correct for Si QDs of diameter greater than 3 nm52,53. The advan-
tage of the Hartree method is that it gives access to the wave-functions ψi and the energy level Ei for each electron 
i in the QD. This is very convenient for the calculation of tunnel transfer rates. For the i-th electron among a num-
ber n of electrons in the QD and for a given drain and gate bias configuration, the Poisson-Schrödinger system of 
equations to be solved is
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where e  is the single electron charge, m an isotropic effective mass,ε is the dielectric constant, Vconf is the confine-
ment potential and Vpol is the bias potential, obtained by solving the 3D Poisson equation without charge. The 
Coulomb potential Vi

coul for the i-th electron is obtained from the charge density pi given by
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In this simple model of Si conduction band with isotropic effective mass, each energy level is twelve-fold 
degenerate, i.e. with a factor of 2 for the spin degeneracy and a factor of 6 for the valley degeneracy. In this 
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work the range of SET operation is such that the number of electrons in the dot is not higher than 2. It is thus a 
single-level system with an energy level depending on the number n of electrons in the dot. Most quantities are 
thus dependent on this number n that is used below either as a variable or as a label for each quantity related to 
the energy level.

Tunnel transfer rates.  We assume that the gate oxide is thick enough for the tunneling between the QD and 
the gate to be negligible. Then the tunnel transfer rates between the source or drain lead L and the dot d are calcu-
lated using the Fermi golden rule, i.e. in the weak coupling limit. In the case of discrete energy levels of negligible 
width, the transfer rates LdΓ  (lead-to-dot) and ΓdL (dot-to-lead) are thus given by
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where n is the number of electron in the dot before tunneling, g
nμ
 is the number of electrons on the energy level 

μn, μl n
 the number of free states on this level, TL the temperature of the lead, fL(μn,TL) the Fermi-Dirac distribution 

function at lead Fermi level EFL
, and ρL the density of states of the lead. The tunneling matrix element Mn is given 

by the Bardeen formula54,55
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where Sbarr is a surface inside the tunnel barrier which separates arbitrarily the dot domain from the electrode 
domain55,56, r( )d n,ψ →  and r( )Lψ →  are the electronic wave functions in the QD and the lead, respectively, and mbarr is 
the electron effective mass in the tunnel barrier. The wave function ψL is deduced from an analytical expression 
derived within the Wentzel-Kramers-Brillouin (WKB) approximation, which has been proven correct by com-
paring the tunneling currents obtained for the simple case of a Gold/SiO2/Gold structure using both our 
approach and an exact calculation55.

Electric current.  The tunnel transfer rates are then introduced into the Master equation to deduce the prob-
abilities P(n) of finding n electrons in the dot. Using the sign convention of Fig. 1, the electronic current I as well 
as the heat currents IS

Q and ID
Q, are given by
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where ( )En FL
μ −  is the energy extracted from the lead reservoir when the transfer occurs. However, in order to 

describe more realistic systems, one must consider the broadening of energy levels due to phonon coupling.

Figure 1.  Schematic view of the SET investigated in this work. Arrows are displayed to indicate the sign 
convention for currents and transfer rates.



www.nature.com/scientificreports/

4Scientific REPOrts | 7: 14783  | DOI:10.1038/s41598-017-14009-4

Broadening of energy levels and heat current.  Since tunneling between dot and electrodes is consid-
ered as sequential, electrons are assumed to rapidly lose their quantum coherence in the QD due to interactions in 
the dot, and in particular to electron-phonon coupling. The consequence of these interactions is a broadening of 
energy levels, called collisional broadening57, which is not negligible in Si-QDs57–61. They have been implemented 
previously in this code for the simulation of double-dot structures47. It should be noted that in this device working 
in sequential regime, with tunneling rates smaller than 4 kHz, the broadening induced by the weak coupling to 
source and drain is negligible compared to that due to the electron-phonon coupling.

To take into account the broadening of levels, we consider a spectral function A(ε) representing the density 
of probability that the electron in the dot has an energy between E and E + dE. The expression of the spectral 
function defined in47 is complex and depends on both the temperature and the frequency of the phonon involved. 
Using a Monte-Carlo algorithm, it is possible to accurately consider the phonon frequency-dependence of spec-
tral function47, which leads to large computation times. Here, we make the approximation of a single Lorentzian 
function centered on the equilibrium energies μn, commonly used in the frame of the Landauer formalism for 
coherent transport62,63, i.e.

ε
ε
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−
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H
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where ε = E − μn is the energy deviation from the discrete energy level μn and H is the full width at half maximum 
(FWHM) of the spectral function. With the introduction of level broadening, the expressions for tunnel transfer 
rates (3) become
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From these tunnel rates, we determine the probabilities Pε(n) to find n electrons in the dot with a deviation ε 
from equilibrium, and the expressions for currents (5–7) are now given by
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Thermoelectric coefficients.  All data required to calculate the figure of merit can be obtained from the 
expression of electronic and heat currents, except the part of thermal conductance contributed by phonons them-
selves that is not calculated in our simulation. In the linear regime, and assuming that source and drain are 
connected to heat reservoirs of temperature Th and Tc, respectively, the Onsager-Callen formalism defines the 
electronic and heat currents as (with sign convention of Fig. 1)64,65
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from simulations the parameters
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Results and Discussion
Studied SET.  The simulated SET consists in a spherical Si-QD of 4.4-nm diameter with 1.2-nm (1.5-nm)-
thick source (drain) tunnel barriers and a 5-nm-thick gate oxide. These tunnel barriers are thin here to achieve 
relatively high electronic conductance. Since a finite mean temperature T = 100 K was considered, the broadening 
of energy levels induced by electron-phonon scattering must be included. According to the rigorous calculations 
by Valentin et al.47, the most likely phonon modes activated in such structure at this temperature correspond to 
spectral functions with FWHMs ranging from H = 0.001kBT to 0.05kBT. In this study, the case of discrete energy 
levels is considered as a reference to be compared with the results obtained in the case of Lorentzian broadening 
of energy levels with aforementioned realistic FWHMs. For comparison, the results obtained for an unrealistical-
ly-wide broadening of H = kBT were also considered.

To investigate the thermoelectric behavior of the SET, a temperature gradient ΔT was applied by fixing the 
temperature of the source and drain reservoirs at T + ΔT/2 and T − ΔT/2, respectively, with ΔT ranging from 
0 to 10 K.

I-V characteristics.  The drain current stability diagram is plotted in Fig. 2 with zooming in on small drain 
bias regime. The center of typical Coulomb diamonds, commonly observed in experimental SETs, corresponds to 
the Coulomb blockade zones where I ≈ 0. To use this SET as a thermoelectric generator, it is necessary to select a 
gate voltage VGS for which the Coulomb blockade vanishes, i.e. the conductance is finite, when applying a small 
drain voltage. This behavior is achieved for VGS around 2.67 V (horizontal dashed line in Fig. 2). At this gate bias 
the I − VDS characteristics, plotted in Fig. 3, are quasi-linear at small drain voltage in the mV range and the elec-
tronic conductance Ge is almost constant.

When a positive temperature gradient ΔT is applied the I − VDS characteristic shifts upwards, which is the 
signature of a thermoelectric effect. According to Eqs. (3), the temperature of electrodes influences the tunnel 
transfer rates via the Fermi-Dirac distributions. Since at VGS = 2.67 V we have μ<EF 1L

, for ΔT > 0 we have 
+ Δ > > − Δf T T f T f T T( /2) ( ) ( /2)L L L , thus T T T( /2) ( )Sd SdΓ + Δ > Γ  and T T T( /2) ( )dD dDΓ − Δ > Γ . As 

both source-to-dot and dot-to-drain tunnel transfer rates increase with VDS, the drain current increases with a 
positive temperature gradient ΔT, and a finite current takes place at VDS = 0 V.

Different working regimes can be observed. In the regimes of heat pump (VDS > 0 and I > 0) and cooler 
(VDS < 0 and I < 0) the QD is a passive system that uses an electrical command to control the thermal flux 
exchanged between the thermal reservoirs (or contacts). In the third regime (VDS < 0 and I < 0), the QD acts as 
a generator that can harvest a part of the existing thermal flux into useful electrical power. The drain voltage for 
which the current is null is usually called the “open-circuit” voltage and is denoted as VOC in what follows.

For a given temperature gradient and a given gate bias, both the Seebeck coefficient α (via (16)) and electronic 
conductance Ge (via (15)) can be extracted from the I − VDS curves shown in Fig. 3.

Seebeck coefficient and broadening of energy levels.  The Seebeck coefficient α is plotted in Fig. 4 as 
a function of E eT( )/n FL

μ −  for different widths H of energy level broadening. If non-broadened energy levels are 
considered, α acts as an ideal Seebeck coefficient as described in66, i.e. E eT( )/n FL

α μ= − , except in the 
[−1V − 0.8 V] range, due to the transition between the states with one and two electrons in the QD, while the 
ideal Seebeck expression is valid only for a single-level QD. The linear behavior is preserved around the energy 
levels even if a large energy broadening up to H = 5 × 10 −2kBT is considered. Since only unrealistic broadenings 
higher than H = 0.1kBT have a significant impact, this linear behavior of the Seebeck coefficient appears to be 
highly robust to perturbations. As the relationship between μn and the gate voltage is only governed by the gate 

Figure 2.  Drain current stability diagram for T = 100 K and ΔT = 5 K. The solid line corresponds to the current 
value I = 0, the dashed line to VGS = 2.67 V.
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capacitance which can be accurately evaluated separately, the Seebeck coefficient in a SET could find some inter-
esting applications in the field of metrology as a nanoscale standard for the Seebeck effect51,66.

Seebeck coefficient and power factor.  The electrical conductance, the Seebeck coefficient and the power 
factor calculated with and without energy broadening are presented in Fig. 5. A realistic broadening value lower 
than H = 0.05kBT has no effect on the plotted parameters, while the performance of the system decreases only in 
the non-realistic case of H = kBT. This indicates that the electron-phonon interactions have no influence on the 
main thermoelectric parameters of the SET related to the electronic conduction. This robustness to energy level 
broadening is understandable from the expressions of tunnel transfer rates given in (9): as the Fermi-Dirac dis-
tribution fL(ε) and the density of states ρL(ε) are multiplied by the spectral function A(ε), we can consider that fL 
and ρL are constant within the energy scale of a small energy-level broadening. The tunnel transfer rates are then 
coinciding with that in the case of discrete energy levels.

As expected, the electronic conductance exhibits peaks when the Fermi level of the contact is nearly aligned 
with the energy level, i.e. when μ≈EF nL

, with a shift due to a self-consistent effect at finite temperature50. Besides, 
the Seebeck coefficient α decreases linearly when increasing the gate bias, and is equal to zero when EF nL

μ= . 
These results were actually visible in Fig. 4, where a different normalization was used to focus on the linearity of 
α in the mV range of VDS. However, at larger scale we can clearly see here that between two energy levels, α 
switches abruptly from negative to positive values, due to the transition from first (n = 1) to second (n = 2) level 
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in the QD. During this transition, the gate bias for which the Seebeck coefficient reaches zero depends on the 
broadening. Indeed, due to the dissymmetry between peaks of conductance, as seen on Fig. 5a, a higher broaden-
ing leads to the vanishing of Seebeck coefficient for a lower gate voltage, as observed in Fig. 5b.We will see that it 
has a consequence on the thermal conductance.

Finally, the power factor (α Ge
2 ) shows a high peak on one side of the energy levels and a smaller residual peak 

on the other side. The peaks are actually located near the Ge peaks shifted toward the highest α. The first peak 
reaches a value around 20 aW.K−2. This value is quite small, due to the weak value of the conductance achievable 
in a SET which is below 1 nS. However, it should be reminded that it is achieved for a 4.4-nm QD and it corre-
sponds actually to 1.3 W.m−2.K−2. That means that a μm2 wide SET matrix could be used to supply ultra-low 
power electronic systems consuming few μW even using low temperature gradients.

Non-linearity in the relationship between heat and electric currents.  The heat currents at the hot 
side IS

Q and cold side ID
Q are plotted in Fig. 6 as functions of the electronic current I for realistic and un-realistic 

broadening of energy levels at two different gate voltages. At the first maximum of power factor in Fig. 5c, i.e. 
VGS = 2.67 V, both heat and electronic currents are slightly lower in absolute value in the case of a wide broaden-
ing H = kBT (Fig. 6a and c). It is due to the fact that a part of electrons are no longer in the energy range of high 
transmission. However, far from the energy levels, i.e. for = .V 3 80GS  V (Fig. 6b and d), currents are of course 
much smaller but they increase significantly in the case of a wide broadening. This can be easily understood by the 
fact that a wide broadening tends to “spread” the current far from the discrete energy levels, which enhances the 
opportunities of transmission.

Inconsistently with Equation (14), the terminal heat currents IS
Q and ID

Q are not linear with respect to the elec-
tric current I. We have checked that the difference −I IS

Q
D
Q perfectly fits the dissipated electric power Pd = VDS × I 

(not shown). This difference between IS
Q and ID

Q and their quadratic form is a consequence of a supplementary 
thermal flux created by Joule effect in the QD i.e. I I P I G/S

Q
D
Q

d e
2− = = . The formula (14) should be modified at 

high bias by adding a non-linearity coefficient β, the heat current taking the form of1 I I TI K TS
Q

S
2β α= + + Δ . 

A similar expression holds for the heat current at drain side. A quadratic fit of the −I ID
Q  curve (symbols in 

(Fig. 6) leads to the non-linearity coefficients βD shown in Fig. 7a. As expected, the evolution of βD − βS corre-
sponds to the inverse of the conductance Ge shown in Fig. 5a and it is related to the transition from electronic 
transport through the first level to electronic transport through the second one. Besides, energy broadening has 
no significant effect near the conductance peak. If the quadratic approach is efficient here, Whitney has shown 
that the TE response in the simplest case of a point contact at pinch off presents a rich nonlinear behaviour, where 
higher-order terms are even more important34.

Another interest of our numerical approach is its ability to capture the asymmetric diffusion of the thermal 
flux induced by Joule heating. Indeed, in standard thermoelectric device, Joule heating, quantified here by 
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β β− = −I I I ( )S
Q

D
Q

D S
2 , is assumed to diffuse symmetrically into the 2 external contacts, thus we would expect to 

obtain −βS = βD = 1/2Ge
67 at least at the conductance peaks. In Fig. 7b, the evolution of the ratio |βS/βD| is plotted. 

Even without energy broadening the system is asymmetric and β β| | < | |S D  around the conductance peaks, i.e. the 
Joule heating is mainly dissipated through the drain. The ratio |βS/βD| = 0.73 corresponds to the ratio of the ohmic 
resistance (evaluated as the ratio of potential difference to electric current – not shown) between source/dot and 
dot/drain. One can notice that this ratio lower than 1 is detrimental to the TE efficiency of the SET as it leads to 
higher thermal flux provided by the hot reservoirs at a given output power.

Moreover, this heat transfer dissymmetry can be tuned by the gate bias even in the case of realistic energy 
level broadening. Then, the electronic contribution to the thermal flux between source and drain contacts can be 
modulated. This effect in a SET could be used as a gate controlled multiplexing of the thermal flux.

Inter-level transitions and figure of merit ZT.  To estimate the potential of the SET as a thermoelectric 
device via the figure of merit α=ZT G T K/e

2 , we have to investigate the electronic contribution to the thermal 
conductance K, extracted from the heat current IS

Q taken at Voc.
A manifestation of the transition between first and second energy levels can be seen in the heat current at 

Voc on the discrete case (Fig. 8a). In the limit of non-broadened energy levels, the electrons that flow through 
the device can have only discrete energy values, which means that the charge current is always associated with a 
thermal flux carried by electrons (and vice versa). In a one-level model, we would expect this thermal flux to be 
null when I = 0, all particles carrying the same energy. In the case of a multiple (yet discrete)-level QD, a peak in 

Figure 6.  Heat currents IS
Q, ID

Q and their average as a function of the electronic current I for two energy 
broadenings and two gate voltages, at T = 100 K and ΔT = 5 K. The crosses represent the quadratic fit for both 
heat currents.
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Figure 8.  (a) Heat current IS
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(dotted) lines for the transfer on the first (second) energy level, as a function of gate voltage, for a discrete case, 
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the heat current – gate voltage characteristics appears even if I = 0 (at VDS = Voc), as shown in Fig. 8a. Actually, 
the center of the peak is located where ΓSd(1) = ΓdS(1) and ΓDd(1) = ΓdD(1) (Fig. 8c), which corresponds to the 
situation where if one electron is in the QD, the probability for this electron to exit the QD is equal to the proba-
bility for another electron to enter. As a consequence, the contributions of both energy levels I(μ1) and I(μ2) to the 
electronic current are finite, which induces a peak of heat current.

On Fig. 9a, this peak at VGS = 3.8 V is still visible on the thermal conductance K I T( / )S
Q

V VDS oc
= Δ =  for the 

realistic case H = 0.05kBT, even though it is small compared to the two other peaks centered on the broadened 
energy levels. This small peak is fully suppressed for H = kBT, as the thermal conductance never reaches zero. 
Regarding the figures of merit plotted in Fig. 9b, a high value of 800 is reached around VGS = 2 V for a weak but 
realistic broadening H = 0.05kBT, but the power factor is very low for such gate voltage (see Fig. 5c). At the peaks 
of power factor, the figure of merit is almost 200. The broadening H = kBT reduces the figure of merit down to 6, 
with peaks corresponding to that of the power factor – gate voltage characteristics (Fig. 5c).

One must keep in mind, however, that in this study the contribution to the thermal flux due to lattice vibra-
tions (phonons) is not included. A rough estimation of the thermal conductance of silicon dioxide (≈1 W/K/m) 
between the contacts would lead to a phonon thermal conductance in the order of nW/K, to be compared with 
some aW/K for the electronic contribution. It has been shown theoretically and experimentally that by nanos-
tructuring semiconductors it is possible to drastically reduce the lattice contribution to the thermal conductance, 
as demonstrated for instance in silicon nanowires with different doping levels13. However, we may expect this 
lattice contribution to be dominant in real devices, leading to significant reduction of the absolute values of both 
ZT and thermoelectric efficiency.

Electric power vs. efficiency.  The figure of merit ZT is an estimator of thermoelectric conversion efficiency 
in linear regime. To investigate further the TE properties of the SET even far-from-equilibrium, the electric power 
and the efficiency have been directly computed. Using the sign convention of Fig. 1, the electric power delivered 
by the SET in the generator operating regime is P = −I × VDS and the thermoelectric efficiency is given by 
η = P I/ S

Q, IS
Q being the thermal flux delivered by the source contact which is here the hot reservoir.

The electric power generated for an applied temperature gradient ΔT = 5 K at a temperature T = 100 K and for 
broadenings H = 0.05kBT and H = kBT are displayed in Fig. 10a and b, respectively. The two maximum of power 
correspond to the peaks of power factor shown in Fig. 5c. They occur at VGS = 2.67 V and 4.71 V, respectively, and 
for VDS = Voc/2. Again, the low maximum absolute value of the delivered electric power (0.22 fW for H = 0.05kBT) 
must be put into perspective with the nano-size of the QD. This power corresponds to a value of 10 Wm−2 which 
is only 1 order of magnitude lower than for a photo-voltaic system while the temperature gradient considered 
here is weak, only 5 K.
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The respective conversion efficiencies are shown in Fig. 10c and d. When the current is weak, the effect of 
energy level broadening is limited and the electronic transport is quasi reversible. As a consequence, the Carnot 
efficiency ηC can be nearly achieved. The maximum of efficiency is thus reached for a current I ≈ 0, i.e. in a work-
ing regime where the delivered electric power P tends to 0, which has very little relevance.

Otherwise, for VGS = 2.67 V and 4.71 V and for =V V /2DS oc , the efficiency at maximum power reaches 49% 
(50% is the theoretical maximum value, limited by the impedance matching in electric circuit) of the Carnot 
efficiency for H = 0.05kBT. This ratio decreases down to 38% for H = kBT. Similar behaviors have been previously 
observed in the case of a resonant-tunneling quantum dot20. For practical applications, this working regime is 
actually much more relevant.

Conclusion
By means of 3D self-consistent simulation, we have explored the thermoelectric properties of a Si-QD based 
SET in the framework of sequential tunneling regime of transport including realistic collisional broadening of 
energy levels. The different TE working regimes of the SET i.e. generator, cooler and heat pump have been inves-
tigated in terms of electric and heat currents in a large voltage range. Interestingly, it was shown that SETs exhibit 
VGS-Seebeck voltage characteristics which are material-independent and appear to be weakly dependent on the 
scattering mechanisms responsible for the energy level broadening inside the dot.

Besides, the transition between the first and the second energy level is shown to lead to a non-linearity of heat 
currents with respect to electronic currents, as well as a thermal conductance peak, even in the case of discrete 
energy levels. This non-linearity is asymmetric between the hot and cold side and can be controlled by the gate 
voltage. The electronic figure of merit ZT, i.e. without considering the phonon contribution, reaches a value as 
high as 200 for realistic energy level broadening. Finally, the SET-based thermoelectric generator was shown to 
exhibit an efficiency reaching 49% of the Carnot efficiency at maximum power. This maximum power corre-
sponds to a significant power density of 10 W.m−2 for a reasonably small temperature gradient of 5 K. Although a 
full implementation of phonon transport at the nanoscale is mandatory to provide fully quantitative estimation 
of the efficiency of such thermoelectric generators, their unique TE properties open the way of promising appli-
cations in nanoscale metrology.

Data Availability.  The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request.

H = 0.05 kBT H = kBT 

po
w

er
 (a

W
) 

ef
fic

ie
nc

y/
C

ar
no

t e
ffi

ci
en

cy
 

ga
te

 v
ol

ta
ge

 (V
) 

ga
te

 v
ol

ta
ge

 (V
) 

(a) (b) 

(c) (d) 

66- 4 2 0 -2 66-4- 4 2 0 -2 -4 

66- 4 2 0 -2 66-4- 4 2 0 -2 -4 

2 

2.5 

3 

3.5 

4 

5 

4.5 

2 

2.5 

3 

3.5 

4 

5 

4.5 

2 

2.5 

3 

3.5 

4 

5 

4.5 

2 

2.5 

3 

3.5 

4 

5 

4.5 

0.2 

0 

0.4 

0.6 

0.8 

1 

40 

0 

80 

120 

160 

200 

60 

20 

100 

140 

180 

220 

drain voltage (mV) drain voltage (mV) 

Figure 10.  Cartography of (a), (b) the generated electric power P and (c), (d) the efficiency η normalized by the 
Carnot efficiency ηc, as a function of both the gate (VGS) and drain biases (VDS), for two different energy level 
broadening and ΔT = 5 K in the SET-based thermoelectric generator.



www.nature.com/scientificreports/

1 2Scientific REPOrts | 7: 14783  | DOI:10.1038/s41598-017-14009-4

References
	 1.	 Goldsmid, H. J. Introduction to thermoelectricity, vol. 121 (Springer, 2010).
	 2.	 Ioffe, A. F. et al. Semiconductor thermoelements and thermoelectric cooling. Physics Today 12, 42, https://doi.org/10.1063/1.3060810 

(1959).
	 3.	 Vining, C. B. An inconvenient truth about thermoelectrics. Nature Materials 8, 83–85, https://doi.org/10.1038/nmat2361 (2009).
	 4.	 Heremans, J. P., Dresselhaus, M. S., Bell, L. E. & Morelli, D. T. When thermoelectrics reached the nanoscale. Nature Nanotechnologies 

8, 471–473, https://doi.org/10.1038/nnano.2013.129 (2013).
	 5.	 Snyder, G. J. & Toberer, E. S. Complex thermoelectric materials. Nature Materials 7, 105–114, https://doi.org/10.1038/nmat2090 

(2008).
	 6.	 Yokomizo, Y. & Nakamura, J. Giant seebeck coefficient of the graphene/h-bn superlattices. Applied Physics Letters 103, 113901, 

https://doi.org/10.1063/1.4820820 (2013).
	 7.	 Hicks, L. & Dresselhaus, M. Effect of quantum-well structures on the thermoelectric figure of merit. Physical Review B 47, 12727, 

https://doi.org/10.1103/PhysRevB.47.12727 (1993).
	 8.	 Hicks, L. & Dresselhaus, M. Thermoelectric figure of merit of a one-dimensional conductor. Physical Review B 47, 16631, https://doi.

org/10.1103/PhysRevB.47.16631 (1993).
	 9.	 Dresselhaus, M. S. et al. New directions for low-dimensional thermoelectric materials. Advanced Materials 19, 1043–1053, https://

doi.org/10.1002/adma.200600527 (2007).
	10.	 Venkatasubramanian, R., Siivola, E., Colpitts, T. & O’quinn, B. Thin-film thermoelectric devices with high room-temperature figures 

of merit. Nature 413, 597–602, https://doi.org/10.1038/35098012 (2001).
	11.	 Zide, J. et al. Demonstration of electron filtering to increase the seebeck coefficient in in 0.53 ga 0.47 as/ in 0.53 ga 0.28 al 0.19 as 

superlattices. Physical Review B 74, 205335, https://doi.org/10.1103/PhysRevB.74.205335 (2006).
	12.	 Dollfus, P., Nguyen, V. H. & Saint-Martin, J. Thermoelectric effects in graphene nanostructures. Journal of Physics: Condensed Matter 

27, 133204, https://doi.org/10.1088/0953-8984/27/13/133204 (2015).
	13.	 Boukai, A. I. et al. Silicon nanowires as efficient thermoelectric materials. Nature 451, 168–171, https://doi.org/10.1038/nature06458 

(2008).
	14.	 Narducci, D. et al. A special issue on silicon and silicon-related materials for thermoelectricity. The European Physical Journal B: 

Condensed Matter and Complex Systems 88, 1–2, https://doi.org/10.1140/epjb/e2015-60458-9 (2015).
	15.	 Hochbaum, A. I. et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 451, 163–167, https://doi.

org/10.1038/nature06381 (2008).
	16.	 Mahan, G. & Sofo, J. The best thermoelectric. Proceedings of the National Academy of Sciences 93, 7436–7439, https://doi.

org/10.1073/pnas.93.15.7436 (1996).
	17.	 Humphrey, T. & Linke, H. Reversible thermoelectric nanomaterials. Physical Review Letters 94, 096601, https://doi.org/10.1103/

PhysRevLett.94.096601 (2005).
	18.	 Humphrey, T., Newbury, R., Taylor, R. & Linke, H. Reversible quantum brownian heat engines for electrons. Physical Review Letters 

89, 116801, https://doi.org/10.1103/PhysRevLett.89.116801 (2002).
	19.	 Esposito, M., Lindenberg, K. & Van den Broeck, C. Thermoelectric efficiency at maximum power in a quantum dot. EPL (Europhysics 

Letters) 85, 60010, https://doi.org/10.1209/0295-5075/85/60010 (2009).
	20.	 Nakpathomkun, N., Xu, H. Q. & Linke, H. Thermoelectric efficiency at maximum power in low-dimensional systems. Physical 

Review B 82, 235428, https://doi.org/10.1103/PhysRevB.82.235428 (2010).
	21.	 Jordan, A. N., Sothmann, B., Sánchez, R. & Büttiker, M. Powerful and efficient energy harvester with resonant-tunneling quantum 

dots. Physical Review B 87, 075312, https://doi.org/10.1103/PhysRevB.87.075312 (2013).
	22.	 Beenakker, C. & Staring, A. Theory of the thermopower of a quantum dot. Physical Review B 46, 9667, https://doi.org/10.1103/

PhysRevB.46.9667 (1992).
	23.	 Staring, A. et al. Coulomb-blockade oscillations in the thermopower of a quantum dot. EPL (Europhysics Letters) 22, 57, https://doi.

org/10.1209/0295-5075/22/1/011 (1993).
	24.	 Harman, T., Taylor, P., Walsh, M. & LaForge, B. Quantum dot superlattice thermoelectric materials and devices. Science 297, 

2229–2232, https://doi.org/10.1126/science.1072886 (2002).
	25.	 López, R. & Sánchez, D. Nonlinear heat transport in mesoscopic conductors: Rectification, peltier effect, and wiedemann-franz law. 

Physical Review B 88, 045129, https://doi.org/10.1103/PhysRevB.88.045129 (2013).
	26.	 Trocha, P. & Barnaś, J. Large enhancement of thermoelectric effects in a double quantum dot system due to interference and 

coulomb correlation phenomena. Physical Review B 85, 085408, https://doi.org/10.1103/PhysRevB.85.085408 (2012).
	27.	 Hartmann, F., Pfeffer, P., Höfling, S., Kamp, M. & Worschech, L. Voltage fluctuation to current converter with coulomb-coupled 

quantum dots. Phys. Rev. Lett. 114, 146805, https://doi.org/10.1103/PhysRevLett.114.146805 (2015).
	28.	 Roche, B. et al. Harvesting dissipated energy with a mesoscopic ratchet. Nature 6, 6738, https://doi.org/10.1038/ncomms7738 

(2015).
	29.	 Thierschmann, H. et al. Three-terminal energy harvester with coupled quantum dots. Nature nanotechnology 10, 854–858, https://

doi.org/10.1038/nnano.2015.176 (2015).
	30.	 Sothmann, B., Sánchez, R. & Jordan, A. N. Thermoelectric energy harvesting with quantum dots. Nanotechnology 26, 032001, 

https://doi.org/10.1088/0957-4484/26/3/032001 (2014).
	31.	 Azema, J., Lombardo, P. & Daré, A.-M. Conditions for requiring nonlinear thermoelectric transport theory in nanodevices. Physical 

Review B 90, 205437, https://doi.org/10.1103/PhysRevB.90.205437 (2014).
	32.	 Meair, J. & Jacquod, P. Scattering theory of nonlinear thermoelectricity in quantum coherent conductors. Journal of Physics: 

Condensed Matter 25, 082201, https://doi.org/10.1088/0953-8984/25/8/082201 (2013).
	33.	 Muralidharan, B. & Grifoni, M. Performance analysis of an interacting quantum dot thermoelectric setup. Phys. Rev. B 85, 155423, 

https://doi.org/10.1103/PhysRevB.85.155423 (2012).
	34.	 Whitney, R. S. Nonlinear thermoelectricity in point contacts at pinch off: A catastrophe aids cooling. Phys. Rev. B 88, 064302, https://

doi.org/10.1103/PhysRevB.88.064302 (2013).
	35.	 Zebarjadi, M., Esfarjani, K. & Shakouri, A. Nonlinear peltier effect in semiconductors. Applied Physics Letters 91, 122104, https://

doi.org/10.1063/1.2785154 (2007).
	36.	 Svensson, S. F. et al. Nonlinear thermovoltage and thermocurrent in quantum dots. New Journal of Physics 15, 105011, https://doi.

org/10.1088/1367-2630/15/10/105011 (2013).
	37.	 Svilans, A., Burke, A. M., Svensson, S. F., Leijnse, M. & Linke, H. Nonlinear thermoelectric response due to energy-dependent 

transport properties of a quantum dot. Physica E: Low-dimensional Systems and Nanostructures 82, 34–38, https://doi.org/10.1016/j.
physe.2015.10.007 (2016).

	38.	 Benenti, G., Casati, G., Saito, K. & Whitney, R. S. Fundamental aspects of steady-state conversion of heat to work at the nanoscale. 
Physics Reports 694, 1–124 http://www.sciencedirect.com/science/article/pii/S0370157317301540. https://doi.org/10.1016/j.
physrep.2017.05.008. Fundamental aspects of steady-state conversion of heat to work at the nanoscale (2017).

	39.	 Matveev, K. & Andreev, A. Thermopower of a single-electron transistor in the regime of strong inelastic cotunneling. Physical 
Review B 66, 045301, https://doi.org/10.1103/PhysRevB.66.045301 (2002).

	40.	 Liu, J., Sun, Q.-f & Xie, X. Enhancement of the thermoelectric figure of merit in a quantum dot due to the coulomb blockade effect. 
Physical Review B 81, 245323, https://doi.org/10.1103/PhysRevB.81.245323 (2010).

http://dx.doi.org/10.1063/1.3060810
http://dx.doi.org/10.1038/nmat2361
http://dx.doi.org/10.1038/nnano.2013.129
http://dx.doi.org/10.1038/nmat2090
http://dx.doi.org/10.1063/1.4820820
http://dx.doi.org/10.1103/PhysRevB.47.12727
http://dx.doi.org/10.1103/PhysRevB.47.16631
http://dx.doi.org/10.1103/PhysRevB.47.16631
http://dx.doi.org/10.1002/adma.200600527
http://dx.doi.org/10.1002/adma.200600527
http://dx.doi.org/10.1038/35098012
http://dx.doi.org/10.1103/PhysRevB.74.205335
http://dx.doi.org/10.1088/0953-8984/27/13/133204
http://dx.doi.org/10.1038/nature06458
http://dx.doi.org/10.1140/epjb/e2015-60458-9
http://dx.doi.org/10.1038/nature06381
http://dx.doi.org/10.1038/nature06381
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1073/pnas.93.15.7436
http://dx.doi.org/10.1103/PhysRevLett.94.096601
http://dx.doi.org/10.1103/PhysRevLett.94.096601
http://dx.doi.org/10.1103/PhysRevLett.89.116801
http://dx.doi.org/10.1209/0295-5075/85/60010
http://dx.doi.org/10.1103/PhysRevB.82.235428
http://dx.doi.org/10.1103/PhysRevB.87.075312
http://dx.doi.org/10.1103/PhysRevB.46.9667
http://dx.doi.org/10.1103/PhysRevB.46.9667
http://dx.doi.org/10.1209/0295-5075/22/1/011
http://dx.doi.org/10.1209/0295-5075/22/1/011
http://dx.doi.org/10.1126/science.1072886
http://dx.doi.org/10.1103/PhysRevB.88.045129
http://dx.doi.org/10.1103/PhysRevB.85.085408
http://dx.doi.org/10.1103/PhysRevLett.114.146805
http://dx.doi.org/10.1038/ncomms7738
http://dx.doi.org/10.1038/nnano.2015.176
http://dx.doi.org/10.1038/nnano.2015.176
http://dx.doi.org/10.1088/0957-4484/26/3/032001
http://dx.doi.org/10.1103/PhysRevB.90.205437
http://dx.doi.org/10.1088/0953-8984/25/8/082201
http://dx.doi.org/10.1103/PhysRevB.85.155423
http://dx.doi.org/10.1103/PhysRevB.88.064302
http://dx.doi.org/10.1103/PhysRevB.88.064302
http://dx.doi.org/10.1063/1.2785154
http://dx.doi.org/10.1063/1.2785154
http://dx.doi.org/10.1088/1367-2630/15/10/105011
http://dx.doi.org/10.1088/1367-2630/15/10/105011
http://dx.doi.org/10.1016/j.physe.2015.10.007
http://dx.doi.org/10.1016/j.physe.2015.10.007
http://www.sciencedirect.com/science/article/pii/S0370157317301540
http://dx.doi.org/10.1016/j.physrep.2017.05.008.
http://dx.doi.org/10.1016/j.physrep.2017.05.008.
http://dx.doi.org/10.1103/PhysRevB.66.045301
http://dx.doi.org/10.1103/PhysRevB.81.245323


www.nature.com/scientificreports/

13Scientific REPOrts | 7: 14783  | DOI:10.1038/s41598-017-14009-4

	41.	 Kubala, B., König, J. & Pekola, J. Violation of the wiedemann-franz law in a single-electron transistor. Physical Review Letters 100, 
066801, https://doi.org/10.1103/PhysRevLett.100.066801 (2008).

	42.	 Jiang, J.-H. & Imry, Y. Enhancing thermoelectric performance using nonlinear transport effects. Physical Review Applied 7, 064001, 
https://doi.org/10.1103/PhysRevApplied.7.064001 (2017).

	43.	 Averin, D. & Likharev, K. Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions. 
Journal of low temperature physics 62, 345–373, https://doi.org/10.1007/BF00683469 (1986).

	44.	 Likharev, K. Single-electron transistors: Electrostatic analogs of the dc squids. IEEE transactions on magnetics 23, 1142–1145, 
https://doi.org/10.1109/TMAG.1987.1065001 (1987).

	45.	 Shin, S. et al. Si-based ultrasmall multiswitching single-electron transistor operating at room-temperature. Applied Physics Letters 
97, 103101, https://doi.org/10.1063/1.3483618 (2010).

	46.	 Deshpande, V. et al. Scaling of trigate nanowire (nw) mosfets to sub-7nm width: 300k transition to single electron transistor. Solid-
State Electronics 84, 179–184, https://doi.org/10.1016/j.sse.2013.02.015 (2013).

	47.	 Valentin, A., Galdin-Retailleau, S. & Dollfus, P. Phonon effect on single-electron transport in two-dot semiconductor devices. 
Journal of Applied Physics 106, 044501, https://doi.org/10.1063/1.3186035 (2009).

	48.	 Scheibner, R. et al. Sequential and cotunneling behavior in the temperature-dependent thermopower of few-electron quantum dots. 
Physical Review B 75, 041301, https://doi.org/10.1103/PhysRevB.75.041301 (2007).

	49.	 Sée, J., Dollfus, P. & Galdin, S. Theoretical investigation of negative differential conductance regime of silicon nanocrystal single-
electron devices. Electron Devices, IEEE Transactions on 53, 1268–1273, https://doi.org/10.1109/TED.2006.871875 (2006).

	50.	 Talbo, V., Galdin-Retailleau, S., Valentin, A. & Dollfus, P. Physical simulation of silicon-nanocrystal-based single-electron 
transistors. IEEE Transactions on Electron Devices 58, 3286–3293, https://doi.org/10.1109/TED.2011.2161611 (2011).

	51.	 Talbo, V., Saint-Martin, J., Apertet, Y., Retailleau, S. & Dollfus, P. Thermoelectric conversion in silicon quantum-dots. In Journal of 
Physics: Conference Series, vol. 395, 012112 (IOP Publishing, 2012). https://doi.org/10.1088/1742-6596/395/1/012112.

	52.	 Sée, J., Dollfus, P. & Galdin, S. Comparison of a density functional theory and a hartree treatment of silicon quantum dot. Journal of 
Applied Physics 92, 3141–3146, https://doi.org/10.1063/1.1499524 (2002).

	53.	 Sée, J., Dollfus, P. & Galdin, S. Comparison between a sp3d5 tight-binding and an effective-mass description of silicon quantum dots. 
Phys. Rev. B 66, 193307, https://doi.org/10.1103/PhysRevB.66.193307 (2002).

	54.	 Bardeen, J. Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59, https://doi.org/10.1103/PhysRevLett.6.57 
(1961).

	55.	 Sée, J., Dollfus, P., Galdin, S. & Hesto, P. From wave-functions to current-voltage characteristics: overview of a coulomb blockade 
device simulator using fundamental physical parameters. Journal of Computational Electronics 5, 35–48, https://doi.org/10.1007/
s10825-006-7917-3 (2006).

	56.	 Leriche, B., Leroy, Y. & Cordan, A. Semianalytical model of tunneling in nanocrystal-based memories. Journal of Applied Physics 
100, 074316, https://doi.org/10.1063/1.2356917 (2006).

	57.	 Buttiker, M. Coherent and sequential tunneling in series barriers. IBM Journal of Research and Development 32, 63–75, https://doi.
org/10.1147/rd.321.0063 (1988).

	58.	 Inoshita, T. & Sakaki, H. Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots. Physical 
Review B 56, R4355, https://doi.org/10.1103/PhysRevB.56.R4355 (1997).

	59.	 Král, K. & Khás, Z. Electron self-energy in quantum dots. Physical Review B 57, R2061, https://doi.org/10.1103/PhysRevB.57.R2061 
(1998).

	60.	 Seebeck, J., Nielsen, T. R., Gartner, P. & Jahnke, F. Polarons in semiconductor quantum dots and their role in the quantum kinetics 
of carrier relaxation. Physical Review B 71, 125327, https://doi.org/10.1103/PhysRevB.71.125327 (2005).

	61.	 Stauber, T., Zimmermann, R. & Castella, H. Electron-phonon interaction in quantum dots: A solvable model. Physical Review B 62, 
7336, https://doi.org/10.1103/PhysRevB.62.7336 (2000).

	62.	 Datta, S. Electronic transport in mesoscopic systems (Cambridge university press, 1997).
	63.	 Ferry, D. & Goodnick, S. M. Transport in nanostructures. 6 (Cambridge university press, 1997).
	64.	 Onsager, L. Reciprocal relations in irreversible processes. i. Physical Review 37, 405, https://doi.org/10.1103/PhysRev.37.405 (1931).
	65.	 Callen, H. B. The application of onsager’s reciprocal relations to thermoelectric, thermomagnetic, and galvanomagnetic effects. 

Physical Review 73, 1349, https://doi.org/10.1103/PhysRev.73.1349 (1948).
	66.	 Mani, P., Nakpathomkun, N., Hoffmann, E. A. & Linke, H. A nanoscale standard for the seebeck coefficient. Nano letters 11, 

4679–4681, https://doi.org/10.1021/nl202258f (2011).
	67.	 Apertet, Y., Ouerdane, H., Goupil, C. & Lecoeur, P. Revisiting feynman’s ratchet with thermoelectric transport theory. Physical 

Review E 90, 012113, https://doi.org/10.1103/PhysRevE.90.012113 (2014).

Acknowledgements
The authors would like to thank Yann Apertet for his invaluable support and for fruitful discussion and remarks 
regarding this work.

Author Contributions
V.T. performed the simulations, V.T., J.S.-M., S.R., P.D. analysed the results. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2017

http://dx.doi.org/10.1103/PhysRevLett.100.066801
http://dx.doi.org/10.1103/PhysRevApplied.7.064001
http://dx.doi.org/10.1007/BF00683469
http://dx.doi.org/10.1109/TMAG.1987.1065001
http://dx.doi.org/10.1063/1.3483618
http://dx.doi.org/10.1016/j.sse.2013.02.015
http://dx.doi.org/10.1063/1.3186035
http://dx.doi.org/10.1103/PhysRevB.75.041301
http://dx.doi.org/10.1109/TED.2006.871875
http://dx.doi.org/10.1109/TED.2011.2161611
http://dx.doi.org/10.1088/1742-6596/395/1/012112
http://dx.doi.org/10.1063/1.1499524
http://dx.doi.org/10.1103/PhysRevB.66.193307
http://dx.doi.org/10.1103/PhysRevLett.6.57
http://dx.doi.org/10.1007/s10825-006-7917-3
http://dx.doi.org/10.1007/s10825-006-7917-3
http://dx.doi.org/10.1063/1.2356917
http://dx.doi.org/10.1147/rd.321.0063
http://dx.doi.org/10.1147/rd.321.0063
http://dx.doi.org/10.1103/PhysRevB.56.R4355
http://dx.doi.org/10.1103/PhysRevB.57.R2061
http://dx.doi.org/10.1103/PhysRevB.71.125327
http://dx.doi.org/10.1103/PhysRevB.62.7336
http://dx.doi.org/10.1103/PhysRev.37.405
http://dx.doi.org/10.1103/PhysRev.73.1349
http://dx.doi.org/10.1021/nl202258f
http://dx.doi.org/10.1103/PhysRevE.90.012113
http://creativecommons.org/licenses/by/4.0/

	Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors

	Model

	Electronic structure of Si-QDs. 
	Tunnel transfer rates. 
	Electric current. 
	Broadening of energy levels and heat current. 
	Thermoelectric coefficients. 

	Results and Discussion

	Studied SET. 
	I-V characteristics. 
	Seebeck coefficient and broadening of energy levels. 
	Seebeck coefficient and power factor. 
	Non-linearity in the relationship between heat and electric currents. 
	Inter-level transitions and figure of merit ZT. 
	Electric power vs. efficiency. 

	Conclusion

	Data Availability. 

	Acknowledgements

	Figure 1 Schematic view of the SET investigated in this work.
	Figure 2 Drain current stability diagram for T = 100 K and ΔT = 5 K.
	Figure 3 Current-drain voltage characteristics for three temperature gradients ΔT at VGS = 2.
	Figure 4 Seebeck coefficient as a function of “ideal” Seebeck coefficient for different values of the energy of level broadening H.
	Figure 5 (a) Electronic conductance, (b) Seebeck coefficient and (c) power factor as a function of the gate bias for non-broadened and broadened energy levels with H = 0.
	Figure 6 Heat currents , and their average as a function of the electronic current I for two energy broadenings and two gate voltages, at T = 100 K and ΔT = 5 K.
	Figure 7 (a) Non-linearity coefficient βD for heat current and (b) the ratio |βD/βS| as a function of gate voltage at T = 100 K and ΔT = 5 K.
	Figure 8 (a) Heat current for VDS = Voc, (b) partial electronic currents IS for VDS = Voc considering only the exchange on one level in the QD (1 or 2 electrons) and (c) tunnel transfer rates for VDS = Voc, continuous (dotted) lines for the transfer on th
	Figure 9 (a) Thermal conductance and (b) figure of merit ZT as a function of gate bias for two different energy broadenings.
	Figure 10 Cartography of (a), (b) the generated electric power P and (c), (d) the efficiency η normalized by the Carnot efficiency ηc, as a function of both the gate (VGS) and drain biases (VDS), for two different energy level broadening and ΔT = 5 K in t




